On the Sato-Tate conjecture for QM-curves of genus two
نویسندگان
چکیده
An abelian surface A is called a QM-abelian surface if its endomorphism ring includes an order of an indefinite quaternion algebra, and a curve C of genus two is called a QM-curve if its jacobian variety is a QMabelian surface. We give a computational result about the distribution of the arguments of the eigenvalues of the Frobenius endomorphisms of QM-abelian surfaces modulo good primes, which supports an analogue of the Sato-Tate Conjecture for such abelian surfaces. We also make some remarks on the field of definition of QM-curves and their endomorphisms.
منابع مشابه
Oscillations of Fourier Coefficients of Modular Forms
a(p) = 2p~ @ ) cos 0(p). Since we know the truth of the Ramanujan-Petersson conjecture, it follows that the 0(p)'s are real. Inspired by the Sato-Tate conjecture for elliptic curves, Serre [14] conjectured that the 0(p)'s are uniformly distributed in the interval [0, rc] with respect to the 1 measure -sin2OdO. Following Serre, we shall refer to this as the Sato-Tate r~ conjecture, there being n...
متن کاملHyperelliptic curves, L-polynomials and random matrices
We analyze the distribution of unitarized L-polynomials L̄p(T ) (as p varies) obtained from a hyperelliptic curve of genus g ≤ 3 defined over Q. In the generic case, we find experimental agreement with a predicted correspondence (based on the Katz-Sarnak random matrix model) between the distributions of L̄p(T ) and of characteristic polynomials of random matrices in the compact Lie group USp(2g)....
متن کاملBeilinson’s Tate conjecture for K2 and finiteness of torsion zero-cycles on elliptic surface
2 Preliminaries 4 2.1 Syntomic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Syntomic cohomology with log poles . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Symbol maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Tate curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5...
متن کاملElliptic Curves with Large Rank over Function Fields
We produce explicit elliptic curves over Fp(t) whose Mordell-Weil groups have arbitrarily large rank. Our method is to prove the conjecture of Birch and Swinnerton-Dyer for these curves (or rather the Tate conjecture for related elliptic surfaces) and then use zeta functions to determine the rank. In contrast to earlier examples of Shafarevitch and Tate, our curves are not isotrivial. Asymptoti...
متن کاملLinnik’s Theorem for Sato-tate Laws on Elliptic Curves with Complex Multiplication
Let E be an elliptic curve over Q, and for each prime p, let #E(Fp) be the number of rational points of E over the finite field Fp. Taking aE(p) = p+ 1−#E(Fp) to be the trace of Frobenius as usual, we recall the following important result of Hasse, which holds when E has good reduction at p: |aE(p)| ≤ 2 √ p. It follows that for each prime p, there is a unique angle θp ∈ [0, π] (which we call th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999